Determinants

Philipp Warode

September 30, 2019

Determinant

For quadratic matrices we can compute the determinant as

Determinant

For quadratic matrices we can compute the determinant as

Determinant

For quadratic matrices we can compute the determinant as

$$
\begin{aligned}
\operatorname{det}(a) & =a \quad \operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c \\
\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) & =a e i+b f g+c d h-g e c-h f a-i d b
\end{aligned}
$$

determinant $=$ volume of the n-th dimensional parallelotope
determinant $=$ volume $=0$ if vectors are linear dependent

Determinant

For quadratic matrices we can compute the determinant as

$$
\begin{aligned}
\operatorname{det}(a) & =a \quad \operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c \\
\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) & =a e i+b f g+c d h-g e c-h f a-i d b
\end{aligned}
$$

determinant $=$ volume of the n-th dimensional parallelotope
determinant $=$ volume $=0$ if vectors are linear dependent

Determinant

For quadratic matrices we can compute the determinant as

$$
\begin{aligned}
\operatorname{det}(a) & =a \quad \operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c \\
\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) & =a e i+b f g+c d h-g e c-h f a-i d b
\end{aligned}
$$

determinant $=$ volume of the n-th dimensional parallelotope
determinant $=$ volume $=0$ if vectors are linear dependent

For a quadratic matrix $A \in \mathbb{R}^{n \times n}$ for $n \geq 2$ we can compute

$$
\begin{aligned}
& \left.\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} \cdot a_{i j} \cdot \operatorname{det}\left(A_{i j}\right) \quad \text { (Expansion along row } i\right) \\
& \operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} \cdot a_{i j} \cdot \operatorname{det}\left(A_{i j}\right) \quad(\text { Expansion along column } j)
\end{aligned}
$$

where

$$
A_{i j}=\operatorname{det}\left(\begin{array}{ccccc}
a_{11} & \cdots & a_{1 j} & \cdots & a_{1 n} \\
\vdots & & \vdots & & \vdots \\
a_{i 1} & \cdots & a_{i j} & \cdots & a_{i n} \\
\vdots & & \vdots & & \vdots \\
a_{n 1} & \cdots & a_{n j} & \cdots & a_{n n}
\end{array}\right)
$$

Properties of the determinant

Theorem

For $A \in \mathbb{R}^{n \times n}$ and $\lambda \in \mathbb{R}$ we have

- $\operatorname{det} A=\operatorname{det} A^{T}$
- $\operatorname{det}(\lambda A)=\lambda^{n} \operatorname{det}(A)$
- $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
- $\operatorname{det} A^{-1}=\frac{1}{\operatorname{det} A}$

Theorem

For $A \in \mathbb{R}^{n \times n}$ and $\lambda \in \mathbb{R}$ we have

- $\operatorname{det} A=\operatorname{det} A^{T}$
- $\operatorname{det}(\lambda A)=\lambda^{n} \operatorname{det}(A)$
- $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
- $\operatorname{det} A^{-1}=\frac{1}{\operatorname{det} A}$

Theorem

For $A \in \mathbb{R}^{n \times n}$ the following statements are equivalent.

- $\operatorname{det} A \neq 0$
- A has rank n
- $A x=b$ has a unique solution
- If A is a triangular matrix, i.e.

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
0 & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right)
$$

then $\operatorname{det}(A)=\prod_{i=1}^{n} a_{i j}$.

- If A is a triangular matrix, i.e.

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
0 & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right)
$$

then $\operatorname{det}(A)=\prod_{i=1}^{n} a_{i j}$.

- In particular if $A=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ then $\operatorname{det}(A)=\prod_{i=1}^{n} d_{i}$.
- If B is obtained by swapping two rows or columns in A then $\operatorname{det}(B)=-\operatorname{det}(A)$.
- If B is obtained by swapping two rows or columns in A then $\operatorname{det}(B)=-\operatorname{det}(A)$.
- If B is obtained by multiplying one row or column in A by some λ then $\operatorname{det}(B)=\lambda \operatorname{det}(B)$.
- If B is obtained by swapping two rows or columns in A then $\operatorname{det}(B)=-\operatorname{det}(A)$.
- If B is obtained by multiplying one row or column in A by some λ then $\operatorname{det}(B)=\lambda \operatorname{det}(B)$.
- If B is obtained by adding a multiple of one row/column to another row/column in A then $\operatorname{det}(A)=\operatorname{det}(B)$.
- If B is obtained by swapping two rows or columns in A then $\operatorname{det}(B)=-\operatorname{det}(A)$.
- If B is obtained by multiplying one row or column in A by some λ then $\operatorname{det}(B)=\lambda \operatorname{det}(B)$.
- If B is obtained by adding a multiple of one row/column to another row/column in A then $\operatorname{det}(A)=\operatorname{det}(B)$.
- It is possible to compute the determinant by transforming the matrix A into a triangular matrix B

